Integrated life-cycle design of building enclosures

Rodrigo Mora a,*, Girma Bitsuamlak b,1, Miljana Horvat c,2

a BCIT, Building Science Centre of Excellence, 3700 Willingdon Avenue, Burnaby, British Columbia, V5G 3H2 Canada
b Florida International University, Department of Civil Engineering, Miami, FL, USA
c Ryerson University, Department of Architectural Science, Toronto, Ontario, Canada

A R T I C L E I N F O

Article history:
Received 29 October 2010
Received in revised form
13 January 2011
Accepted 18 January 2011

Keywords:
Life-cycle
Service life
Building science
Building enclosure
Building integration

A B S T R A C T

In spite of the progress in developing methods and tools to support sustainable building design, there is still a lack of a formal approach to bridge the “no man’s land” gap between the traditional building engineering disciplines, and between these and the architecture, to achieve the level of building integration required for sustainability. This paper presents an integration framework that aims at facilitating the inclusion of life-cycle considerations in the design process from the outset, so that materials and systems are selected not only from environmentally friendly resources, but most importantly, to match service life performance expectations. The framework describes an iterative methodology to evaluate these expectations in practice, which is based on an understanding and modeling of the dynamics of the built environment to which materials, components, and systems are exposed. Quantitative methods and test protocols can be incorporated into the framework for assessing function-performance aspects of alternative solutions. Due to its complexity stemming from its inherent exposure to variable environmental loads and its multi-functionality, the framework focuses on addressing the life cycle of the building enclosure system. It is expected that the organization of the underlying principles of building life-cycle performance described in this paper will become a knowledge core that will facilitate a more integrated treatment of buildings in research, education, and practice.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The quest for sustainability has raised awareness of the role of buildings as major direct and indirect stressors of the natural environment, bringing new challenges for engineers to come up with creative approaches for minimizing the use of natural resources (i.e., doing more with less) and maximizing the use of renewable resources, while optimizing whole engineered systems doing more with less) and maximizing the use of renewable resources, while optimizing whole engineered systems. Understanding of environmental ergonomics, building materials, and durability analysis is not applied consistently during the building process.

Frameworks are qualitatively organized principles for analyzing a system. This paper presents a framework to be used by integrated building design teams to facilitate the systematic assessment of life-cycle priorities during the design process from the outset, so that materials and systems are selected not only to use environmentally friendly resources, but most importantly, to match service life performance expectations. The framework emphasizes whole building performance from a building enclosure perspective. It helps identify the primary cause—effect interactions that describe the dynamics of enclosure systems as part of the built environment, and make these explicit to support an integrated assessment of the building enclosure life-cycle performance. These relationships have been formalized in the field of building science. Unfortunately, they are not systematically applied during the building process with numerous negative consequences to building service life performance. The framework is therefore founded on the principles of building science, or building physics under the premise that every design strategy proposed to improve building performance needs to