

46^{th} Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Talk

Constructing an H-matrix via Randomized Algorithms

pp.: 1-4

Constructing an \mathcal{H} -matrix via Randomized Algorithms

Mohammad Izadi* Shahid Bahonar University of Kerman

Abstract

The key point in constructing an \mathcal{H} -matrix is to approximate certain subblocks $D_{n'\times m'}$ of a dense matrix $A_{n\times m}$ by data-sparse low-rank matrices that can be represented as $R_{n'\times m'} = U_{n'\times k} \cdot V_{k\times m'}^T$, with $k \ll \min\{n', m'\}$ as the actual rank of R. To obtain R from D, the most accurate method is based on SVD which is computationally expensive and needs $\mathcal{O}(n'm'\min\{n', m'\})$ operations. In this paper, we consider various randomized algorithms to obtain such approximations with cost $\mathcal{O}(m'n'k)$. We confirm the advantages of these algorithms applied to a BEM model numerically.

Keywords: Hierarchical matrices, low-rank approximation, randomized algorithm Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

 \mathcal{H} -matrices provide an inexpensive but sufficiently accurate approximation to dense matrices as they appear in boundary element methods (BEM). Solving integral equations by BEM, finally lead to a linear system of equations:

$$\boldsymbol{A} \cdot \boldsymbol{x} = \boldsymbol{b}. \tag{1}$$

The resulting matrix $\mathbf{A}_{n\times n}$ is dense and requires complexity $\mathcal{O}(n^2)$ for its storage as well as matrix-vector multiplication. For computing matrix-matrix multiplication and inversion, this cost would be $\mathcal{O}(n^3)$, which for large-scale computations is prohibitively expensive. The hierarchical matrix technique provides a data-sparse structure by which all \mathcal{H} -matrix arithmetic can be performed in almost optimal complexity $\mathcal{O}(n\log^q n)$ with moderate constant q.

To build an \mathcal{H} -matrix approximation $A_{\mathcal{H}}$ to a given dense matrix A, a tree like datasparse structure is used to store A such that the leaves of the tree are dense or lowrank matrices ($\mathcal{R}(k)$ -matrices). A low-rank matrix stored in so-called $\mathcal{R}(k)$ -format in the following sense:

Definition 1.1. A matrix block $\mathbf{R}_{n'\times m'}$, is called to be stored in an $\mathcal{R}(k)$ -matrix representation, if we have $\mathbf{R} = \mathbf{U} \cdot \mathbf{V}^T$, where the two matrices $\mathbf{U}_{n'\times k}$ and $\mathbf{V}_{m'\times k}$ are dense matrices. We call \mathbf{R} a low-rank or $\mathcal{R}(k)$ -matrix.

^{*}Speaker