Constructing an \mathcal{H}-matrix via Randomized Algorithms

Mohammad Izadi*
Shahid Bahonar University of Kerman

Abstract

The key point in constructing an \mathcal{H}-matrix is to approximate certain subblocks $\boldsymbol{D}_{n^{\prime} \times m^{\prime}}$ of a dense matrix $\boldsymbol{A}_{n \times m}$ by data-sparse low-rank matrices that can be represented as $\boldsymbol{R}_{n^{\prime} \times m^{\prime}}=\boldsymbol{U}_{n^{\prime} \times k} \cdot \boldsymbol{V}_{k \times m^{\prime}}^{T}$, with $k \ll \min \left\{n^{\prime}, m^{\prime}\right\}$ as the actual rank of \boldsymbol{R}. To obtain \boldsymbol{R} from \boldsymbol{D}, the most accurate method is based on SVD which is computationally expensive and needs $\mathcal{O}\left(n^{\prime} m^{\prime} \min \left\{n^{\prime}, m^{\prime}\right\}\right)$ operations. In this paper, we consider various randomized algorithms to obtain such approximations with cost $\mathcal{O}\left(m^{\prime} n^{\prime} k\right)$. We confirm the advantages of these algorithms applied to a BEM model numerically.

Keywords: Hierarchical matrices, low-rank approximation, randomized algorithm Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

\mathcal{H}-matrices provide an inexpensive but sufficiently accurate approximation to dense matrices as they appear in boundary element methods (BEM). Solving integral equations by BEM, finally lead to a linear system of equations:

$$
\begin{equation*}
A \cdot x=b \tag{1}
\end{equation*}
$$

The resulting matrix $A_{n \times n}$ is dense and requires complexity $\mathcal{O}\left(n^{2}\right)$ for its storage as well as matrix-vector multiplication. For computing matrix-matrix multiplication and inversion, this cost would be $\mathcal{O}\left(n^{3}\right)$, which for large-scale computations is prohibitively expensive. The hierarchical matrix technique provides a data-sparse structure by which all \mathcal{H}-matrix arithmetic can be performed in almost optimal complexity $\mathcal{O}\left(n \log ^{q} n\right)$ with moderate constant q.

To build an \mathcal{H}-matrix approximation $\boldsymbol{A}_{\mathcal{H}}$ to a given dense matrix \boldsymbol{A}, a tree like datasparse structure is used to store \boldsymbol{A} such that the leaves of the tree are dense or lowrank matrices $(\mathcal{R}(k)$-matrices $)$. A low-rank matrix stored in so-called $\mathcal{R}(k)$-format in the following sense:

Definition 1.1. A matrix block $\boldsymbol{R}_{n^{\prime} \times m^{\prime}}$, is called to be stored in an $\mathcal{R}(k)$-matrix representation, if we have $\boldsymbol{R}=\boldsymbol{U} \cdot \boldsymbol{V}^{T}$, where the two matrices $\boldsymbol{U}_{n^{\prime} \times k}$ and $\boldsymbol{V}_{m^{\prime} \times k}$ are dense matrices. We call \boldsymbol{R} a low-rank or $\mathcal{R}(k)$-matrix.

[^0]
[^0]: *Speaker

