

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Containment problem for the ideal of fatted almost collinear closed points in \mathbb{P}^2 pp.: 1–4

Containment problem for the ideal of fatted almost collinear closed points in \mathbb{P}^2

Mohammad Mosakhani^{*} Mathematics Faculty, K. N. Toosi University of Technology

Hassan Haghighi Mathematics Faculty, K. N. Toosi University of Technology

Abstract

In this paper, we study the containment problem for the ideal of a zero dimensional closed subscheme $Z = cp_0 + p_1 + \cdots + p_n$ of \mathbb{P}^2 , where all points p_i except p_0 , lie on a line and p_0 is considered with multiplicity c. We determine some numerical invariants of the ideal of this type of configuration, that is, the least degree of the generators of $I(Z)^{(r)}$, the resurgence of I(Z) as well as the Waldschmit's constant of I(Z).

Keywords: Symbolic power, Resurgence, Fat point Mathematics Subject Classification [2010]: 14N20, 13F20

1 Introduction

Let $R = \mathbb{K}[\mathbb{P}^N] = \mathbb{K}[x_0, x_1, \dots, x_N]$ be the homogeneous coordinate ring of the projective space \mathbb{P}^N , where \mathbb{K} is an algebraically closed field of arbitrary characteristic. Let I be a nontrivial homogeneous ideal of R. The r^{th} symbolic power of I is defined to be the ideal

$$I^{(r)} = \bigcap_{P \in \operatorname{Ass}(I)} (R \cap I^r R_P).$$

Equivalently, $I^{(r)}$ is the contraction of the ideal $I^r R_U$ to R, i.e.,

$$I^{(r)} = R \cap I^r R_U,$$

where U is the multiplicative closed set $R - \bigcup_{P \in Ass(I)} P$.

A natural algebraic operation for investigating the algebraic structure of I is to study the behavior of its ordinary power I^r , for each positive integer r, i.e., the ideal generated by products of r elements of I. On the other hand, I^r determines a closed subscheme of \mathbb{P}^N , a geometric object that is defined by the intersection of those primary components of I^r which their radical are strictly contained in $\langle x_0, x_1, \ldots, x_N \rangle$, denoted by $I^{(r)}$. But contrary to I^r , the generators of $I^{(r)}$ can not be obtained easily. A natural way to obtain information about the generators of $I^{(r)}$, is to compare its generators with the generators of different ordinary powers of I. In this direction, it can be easily proved that $I^m \subseteq I^{(r)}$

^{*}Speaker