$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University
Talk
Ternary (σ, τ, ξ)-derivations on Banach ternary algebras

Ternary (σ, τ, ξ)-Derivations on Banach Ternary Algebras

Razieh Farokhzad*
Gonbad-Kavous University

Madjid Eshaghi
Semnan University

Abstract

Let A be a Banach ternary algebra over a scalar field \mathbb{R} or \mathbb{C} and X be a Banach ternary A-module. Let σ, τ and ξ be linear mappings on A. We define a ternary (σ, τ, ξ)-derivation and a Lie ternary (σ, τ, ξ)-derivation. Moreover, we prove the generalized Hyers-Ulam-Rassias stability of ternary and lie ternary (σ, τ, ξ)-derivations on Banach ternary algebras.

Keywords: Banach ternary A-module, Ternary (σ, τ, ξ)-derivation, Hyers-UlamRassias stability.
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Ternary algebraic operations were considered in the 19 th century by several mathematicians such as A. Cayley [3] who introduced the notion of cubic matrix which in turn was generalized by Kapranov, Gelfand and Zelevinskii in 1990 ([4]).
A ternary (associative) algebra $(A,[])$ is a linear space A over a scalar field $\mathbb{F}=(\mathbb{R}$ or $\mathbb{C})$ equipped with a linear mapping, the so-called ternary product, []: $A \times A \times A \rightarrow A$ such that $[[a b c] d e]=[a[b c d] e]$ for all $a, b, c, d, e \in A$. This notion is a natural generalization of the binary case. It is known that unital ternary algebras are trivial and finitely generated ternary algebras are ternary subalgebras of trivial ternary algebras [1].

By a Banach ternary algebra we mean a ternary algebra equipped with a complete norm $\|$.$\| such that \|[a b c]\| \leq\|a\|\|b\|\| \| c \|$.

Let A be a Banach ternary algebra and X be a Banach space. Then X is called a ternary Banach A-module, if module operations $A \times A \times X \rightarrow X, A \times X \times A \rightarrow X$, and $X \times A \times A \rightarrow X$ are \mathbb{C}-linear in every variable. Moreover satisfy:

$$
\max \left\{\left\|[x a b]_{X}\right\|,\left\|[a x b]_{X}\right\|,\left\|[a b x]_{X}\right\|\right\} \leq\|a\|\|b\|\|x\|
$$

for all $x \in X$ and all $a, b \in A$.
Let σ, τ and ξ be linear mappings on A. A linear mapping $D:\left(A,[]_{A}\right) \rightarrow\left(X,[]_{X}\right)$ is called a ternary (σ, τ, ξ)-derivation, if

$$
\begin{equation*}
D\left([a b c]_{A}\right)=[D(a) \tau(b) \xi(c)]_{X}+[\sigma(a) D(b) \xi(c)]_{X}+[\sigma(a) \tau(b) D(c)]_{X} \tag{1}
\end{equation*}
$$

[^0]
[^0]: *Speaker

