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Abstract

In this paper, we obtain some new fixed point theorems for the sum of two weakly
sequentialy continuous mappings T1 and T2 on an L−embedded convex subset C in
a Banach space X, in which T1 : C → X is nonexpansive and T2 : C → X is
continuous with T2(C) being contained in a compact set. As a result, we derive fixed
point theorems on weak∗ compact convex subsets of the continuous dual X∗ of an
M−embedded Banach space X.
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1 Introduction

Let X be a Banach space and C be a subset of X. A mapping T : C → X is called
nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ C. A point x ∈ X is called a
fixed point of T , if Tx = x. A mapping T : C → X is called compact continuous if T
is compact and continuous on C. In [4] O’Regan studied the fixed points of the sum of
a nonexpansive mapping with a compact continuous on a weakly compact subset C of X
and in [2] and [3] Krasnoselskii combined two well-known fixed point theorems (Schauder’s
fixed point Theorem and the contraction mapping principle) to gain the fixed points of
the sum of two mappings T1 and T2 on a closed convex subset C in a Banach space X,
in which T1 : C → X is a contraction and T2 : C → X is continuous with T2(C) being
contained in a compact set . In this paper, among other things we study the fixed point
of the sum of two such mapings on an L−embedded convex subset of X allowing T1 to
be a nonexpansive mapping instead of a contraction(Theorem 2.2). In [1], Lau and Zhang
called a nonempty subset C of a Banach space X, L−embedded if there is a subspace Xs

of X∗∗ such that X +Xs = X ⊕1 Xs in X∗∗ and C
w∗

⊂ C ⊕1 Xs. That is, for each x ∈ C
w∗

there are c ∈ C and ξ ∈ Xs such that x = c + ξ and ∥x∥ = ∥c∥ + ∥ξ∥. As remarked in the
same paper, (by taking Xs = 0) it is readily seen that every L−embedded subset C of a
Banach space X is weak∗−closed and hence closed. Also every weakly compact subset of
Banach space is L−embedded, but not vice-versa, [1].

Next, we use our results to derive fixed point theorems on weak∗ compact convex
subsets of the dual space X∗ of an M−embedded Banach space X (Theorem 2.4). As
in [5], a Banach space X is M−embedded if X is an M -ideal in its bidual X∗∗, i.e.
X⊥ = {φ ∈ X∗∗∗ : φ(x) = 0 for all x ∈ X} is an l1−summand in X∗∗∗.
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