

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Amply Rad-supplemented lattices

(Amply) Rad-Supplemented Lattices

Maryam Eslami^{*} Department of mathematics, University of Mazandaran, Babolsar, Iran. Yahya Talebi Department of Mathematics, University of Mazandaran, Babolsar, Iran.

Abstract

In this paper, we introduce and investigate (amply) Rad-supplemented lattices. If L is a Rad-supplemented lattice and $a \in L$, then 1/a is Rad-supplemented. It is shown that an algebraic lattice L is amply Rad-supplemented iff L is a Rad-supplemented. If a/0 and 1/a are Rad-supplemented and a has a Rad-supplement b in d/0 for every sublattice d/0 with $a \leq d$, then L is Rad-supplemented.

Keywords: *Rad*-Supplement, ample *Rad*-Supplement, *Rad*-Supplemented Lattice, amply *Rad*-Supplemented Lattice Mathematics Subject Classification [2010]: 06CXX, 16D10

1 Introduction

Throughout this paper, we assume that L is a complete modular lattice with smallest element 0 and greatest element 1. An element a of a lattice L is called *small* in L (notation $a \ll L$), if $a \lor b \neq 1$ for every $b \neq 1$.

Let a and b be elements of a lattice L. a is called a supplement of b in L if a is minimal with respect to $1 = a \lor b$. a is a supplement of b in L iff $1 = a \lor b$ and $a \land b \ll a/0$ (see [3]). A lattice L is called supplemented if every element of L has a supplement in L. L is called amply supplemented if for any two elements a and b of L with $1 = a \lor b$, b/0 contains a supplement of a. A subset D of L is called upper directed if each finite subset of D has an upper bound in D. A lattice L is called upper continuous if $a \land (\bigvee D) = \bigvee_{d \in D} (a \land d)$) holds for every $a \in L$ and upper directed subset $D \subseteq L$. An element $a \in L$ is called compact if for every subset X of L and $a \leq \bigvee X$ there is a finite subset $F \subseteq X$ such that $a \leq \bigvee F$ and L is said to be compact if 1 is compact. A lattice L is called essential in L if $e \land a = 0$ holds for each element $a \in L$, $a \neq 0$. A lattice L is called coatomic if every proper element of L is contained in a maximal element of L. Rad(L) will indicate radical of L (the intersection of all the maximal elements $\neq 1$ in L). We have the following properties of Rad(L) in a lattice L.

Lemma 1.1. [3, Lemma 7.8 and Proposition 12.2] Let a be an element in a lattice L. (1) $a \lor R(L) \le R(1/a);$

(2) If $a \leq R(L)$ then R(1/a) = R(L);

(3) If L is algebraic, then $R(a/0) = a \wedge R(L)$.

*Speaker