

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Recurrent second fundamental form in submanifolds of Kenmotsu manifolds pp.: 1–3

Recurrent second fundamental form in submanifolds of Kenmotsu manifolds

Mohammad Bagher Kazemi^{*} University of Zanjan

Abstract

In this paper, we study recurrent submanifolds of Kenmotsu manifolds. We show that they are totally geodesic. Moreover, generalized recurrent submanifolds of Kenmotsu manifolds are investigated.

Keywords: Kenmotsu manifold, Second Fundamental form, Submanifold Mathematics Subject Classification [2010]: 53C50, 53C15

1 Preliminaries

Let $(M, \phi, \xi, \eta, \tilde{g})$ be a 2n + 1 dimensional almost contact manifold, where ϕ, ξ, η and \tilde{g} are (1, 1)-tensor field, vector field, 1-form and a Riemannian metric respectively, which satisfy the following conditions

$$\phi \xi = 0, \eta(\phi X) = 0, \eta(\xi) = 1,$$

$$\phi^2 X = -X + \eta(X)\xi, \quad \tilde{g}(\xi, X) = \eta(X),$$

$$(\tilde{\nabla}_X \eta)(Y) = g(X, Y) - \eta(X)\eta(Y), \quad \forall X, Y \in \mathcal{T}\tilde{M}.$$

An almost contact manifold is said to be a Kenmotsu manifold if

$$(\tilde{\nabla}_X \phi) Y = g(\phi X, Y) \xi - \eta(Y) \phi X, \tag{1}$$

where $\tilde{\nabla}$ is the Riemannian connection of \tilde{g} [2]. In a Kenmotsu manifold the following relation holds

$$(\tilde{\nabla}_X \xi) = X - \eta(X)\xi.$$
⁽²⁾

Let (M, g) be a submanifold of a Riemannian manifold (\tilde{M}, \tilde{g}) . If ∇ be the Levi-Chivita connections of M, then from Gauss and Weingarten formulas we have [5]

$$\tilde{\nabla}_Y X = \nabla_Y X + B(X, Y) , \ \tilde{\nabla}_Y V = D_Y V - A_V Y,$$
(3)

for any X and Y in $\mathcal{T}M$ and V in $(\mathcal{T}M)^{\perp}$. In (3), B, A and D are the second fundamental form, associated second fundamental form (shape operator) and normal connection on the $(\mathcal{T}M)^{\perp}$, respectively.

Let M be a submanifold of an almost contact manifold $(\tilde{M}, \phi, \xi, \eta, \tilde{g})$. M is said to be an invariant submanifold if the vector field ξ is tangent to M and $\phi T_p(M) \subset T_pM$ for all $p \in M$. Also, M is said to be an anti-invariant, if $\phi T_p(M) \subset T_p(M)^{\perp}$ for all $p \in M$ [4].

^{*}Speaker