Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations

Hongjing Pan, Ruixiang Xing

School of Mathematical Sciences, South China Normal University 510631, Guangzhou, China
School of Mathematics and Computational Science, Sun Yat-sen University 510275, Guangzhou, China

A R T I C L E I N F O

Article history:
Received 22 March 2010
Accepted 29 September 2010

MSC:
35J93
34C23
34K10

Keywords:
Global bifurcation
Prescribed mean curvature equation
Exact multiplicity
Time map
Quasilinear boundary value problem
Exponential nonlinearity
Power nonlinearity

A B S T R A C T

We investigate various properties of time maps for one-dimensional prescribed mean curvature equations. Using these properties, we obtain some exact multiplicity results of positive solutions and sign-changing solutions. As it turned out, these quasilinear problems show many different phenomena from semilinear problems. Our methods are based on a detailed analysis of time maps.

1. Introduction

Consider the following quasilinear boundary value problem

\[
\begin{aligned}
-\left(\frac{u'}{\sqrt{1 + (u')^2}} \right)' &= \lambda f(u), \quad x \in (-L, L), \\
u(-L) &= u(L) = 0,
\end{aligned}
\]

(1.1)

where \(\lambda \) and \(L \) are positive parameters. In this paper, we are concerned with exact numbers of positive solutions and sign-changing solutions of (1.1) when \(\lambda \) and \(L \) change.

The corresponding semilinear problem

\[
\begin{aligned}
-u'' &= \lambda f(u), \quad x \in (-L, L), \\
u(-L) &= u(L) = 0,
\end{aligned}
\]

(1.2)

has been extensively studied. Many existence and multiplicity results have been obtained. For instance, see [1–6], and the references therein.

* Corresponding author.
E-mail addresses: panhj@scnu.edu.cn (H. Pan), xingrx@mail.sysu.edu.cn (R. Xing).

© 2010 Elsevier Ltd. All rights reserved.