Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Existence, uniqueness and behavior of solutions for a class of nonlinear parabolic problems

Maria Michaela Porzio

Dipartimento di Matematica "Guido Castelnuovo", Sapienza Universitá di Roma, Piazzale A. Moro 2, 00185 Roma, Italy

ARTICLE INFO

Article history: Received 20 July 2010 Accepted 6 May 2011 Communicated by Enzo Mitidieri

MSC: 35k55 35k67 35k65

Keywords: Nonlinear parabolic equations Existence Decay estimates Extinction time Uniqueness

1. Introduction and statement of results

Let us consider the following nonlinear problems

$\left(u_t - \operatorname{div}(a(x, t, u, \nabla u)) = 0\right)$	in Ω_T ,	
u = 0		.1)
$u(x,0) = u_0(x)$	on Ω ,	

where $\Omega_T = \Omega \times (0, T)$, Ω is an open bounded set of \mathbb{R}^N , $N \ge 2, T > 0$ and $\Gamma = \partial \Omega \times (0, T)$, with $\partial \Omega$ regular (for example satisfying the property of positive geometric density).

Here the function $a(x, t, s, \xi)$: $\Omega \times (0, T) \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Caratheodory function¹ satisfying, for a.e. $(x, t) \in \Omega_T$ and for every $s \in \mathbb{R}, \xi$ and $\eta \in \mathbb{R}^N$ the following classical Leray-Lions structure conditions

$$\alpha |\xi|^{p} \le a(x, t, s, \xi)\xi, \quad \alpha > 0, \ 1
(1.2)$$

$$|a(x, t, s, \xi)| \le \beta [|s|^{p-1} + |\xi|^{p-1} + h(x, t)], \quad \beta > 0,$$
(1.3)

$$[a(x, t, s, \xi) - a(x, t, s, \eta)][\xi - \eta] > 0, \quad \xi \neq \eta,$$
(1.4)

where $h \in L^{p'}(\Omega_T), \frac{1}{p} + \frac{1}{p'} = 1.$

ABSTRACT

We prove existence, uniqueness, regularity results and estimates describing the behavior (both for large and small times) of a solution u of some nonlinear parabolic equations of Leray-Lions type including the p-Laplacian. In particular we show how the summability of the initial datum u_0 and the value of p influence the behavior of the solution u, producing ultracontractive or supercontractive estimates or extinction in finite time or different kinds of decay estimates.

© 2011 Elsevier Ltd. All rights reserved.

E-mail address: porzio@mat.uniroma1.it.

¹ That is, it is continuous with respect to (s, ξ) for almost every $(x, t) \in \Omega_T$, and measurable with respect to (x, t) for every $(s, \xi) \in \mathbb{R} \times \mathbb{R}^N$.

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.05.020