Existence, uniqueness and behavior of solutions for a class of nonlinear parabolic problems

Maria Michaela Porzio

Dipartimento di Matematica "Guido Castelnuovo", Sapienza Universitá di Roma, Piazzale A. Moro 2, 00185 Roma, Italy

ARTICLE INFO

Article history:

Received 20 July 2010
Accepted 6 May 2011
Communicated by Enzo Mitidieri

MSC:

35k55
35k67
35k65

Keywords:

Nonlinear parabolic equations
Existence
Decay estimates
Extinction time
Uniqueness

Abstract

We prove existence, uniqueness, regularity results and estimates describing the behavior (both for large and small times) of a solution u of some nonlinear parabolic equations of Leray-Lions type including the p-Laplacian. In particular we show how the summability of the initial datum u_{0} and the value of p influence the behavior of the solution u, producing ultracontractive or supercontractive estimates or extinction in finite time or different kinds of decay estimates.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and statement of results

Let us consider the following nonlinear problems

$$
\begin{cases}u_{t}-\operatorname{div}(a(x, t, u, \nabla u))=0 & \text { in } \Omega_{T}, \tag{1.1}\\ u=0 & \text { on } \Gamma, \\ u(x, 0)=u_{0}(x) & \text { on } \Omega,\end{cases}
$$

where $\Omega_{T}=\Omega \times(0, T), \Omega$ is an open bounded set of $\mathbb{R}^{N}, N \geq 2, T>0$ and $\Gamma=\partial \Omega \times(0, T)$, with $\partial \Omega$ regular (for example satisfying the property of positive geometric density).

Here the function $a(x, t, s, \xi): \Omega \times(0, T) \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Caratheodory function ${ }^{1}$ satisfying, for a.e. $(x, t) \in \Omega_{T}$ and for every $s \in \mathbb{R}, \xi$ and $\eta \in \mathbb{R}^{N}$ the following classical Leray-Lions structure conditions

$$
\begin{align*}
& \alpha|\xi|^{p} \leq a(x, t, s, \xi) \xi, \quad \alpha>0,1<p<N \tag{1.2}\\
& |a(x, t, s, \xi)| \leq \beta\left[|s|^{p-1}+|\xi|^{p-1}+h(x, t)\right], \quad \beta>0 \tag{1.3}\\
& {[a(x, t, s, \xi)-a(x, t, s, \eta)][\xi-\eta]>0, \quad \xi \neq \eta} \tag{1.4}
\end{align*}
$$

where $h \in L^{p^{\prime}}\left(\Omega_{T}\right), \frac{1}{p}+\frac{1}{p^{\prime}}=1$.

[^0]
[^0]: E-mail address: porzio@mat.uniroma1.it.
 1 That is, it is continuous with respect to (s, ξ) for almost every $(x, t) \in \Omega_{T}$, and measurable with respect to (x, t) for every $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$.

