The projective vector field of a kind of three-dimensional quasi-homogeneous system on \mathbb{S}^2☆

Jianfeng Huang, Yunlin Zhao*
Department of Mathematics, Sun-Yat Sen University, Guangzhou 510275, China

A R T I C L E I N F O
Article history:
Received 2 June 2010
Accepted 22 March 2011
Communicated by Ravi Agarwal

Keywords:
Quasi-homogeneous systems
Projective vector fields
Limit cycles
Lienard system

A B S T R A C T

In this paper we study the projective vector field Q_1 of a three-dimensional quasi-homogeneous system with weight $(1, 1, \alpha_3)$ and degree $\delta = 2, \alpha_3 \geq 2$. Projective vector fields Q_i of this kind are classified into two types. For one type, Q_1 has no closed orbit and at most eight singularities, which lead to a global topology of the three-dimensional system. For the other type, Q_1 has at most ten singularities. In addition, we show a relationship between Q_1 and a Lienard system of this type. For both of them we obtain some conditions for the existence of limit cycles.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and statements of the main results

Let $Q(x) = (Q_1(x), Q_2(x), Q_3(x))$ be a polynomial vector field in \mathbb{R}^3, where $x = (x_1, x_2, x_3)$. We say that Q is quasi-homogeneous with weight $(\alpha_1, \alpha_2, \alpha_3)$ and degree δ if

$$Q_1(\lambda^{\alpha_1}x_1, \lambda^{\alpha_2}x_2, \lambda^{\alpha_3}x_3) = \lambda^{\alpha_1-1+\delta}Q_1(x_1, x_2, x_3),$$

$$Q_2(\lambda^{\alpha_1}x_1, \lambda^{\alpha_2}x_2, \lambda^{\alpha_3}x_3) = \lambda^{\alpha_2-1+\delta}Q_2(x_1, x_2, x_3),$$

$$Q_3(\lambda^{\alpha_1}x_1, \lambda^{\alpha_2}x_2, \lambda^{\alpha_3}x_3) = \lambda^{\alpha_3-1+\delta}Q_3(x_1, x_2, x_3),$$

where $\lambda \in \mathbb{R}$ and $\delta, \alpha_1, \alpha_2, \alpha_3 \in \mathbb{Z}^+$ (see [1,2]). The differential system

$$\frac{dx}{dt} = Q(x)$$

is called a quasi-homogeneous polynomial system with weight $(\alpha_1, \alpha_2, \alpha_3)$ and degree δ. In particular, (2) is a homogeneous polynomial system when $(\alpha_1, \alpha_2, \alpha_3) = (1, 1, 1)$.

If we transform the coordinates such that

$$x = (x_1, x_2, x_3) = (r^{\alpha_1}y_1, r^{\alpha_2}y_2, r^{\alpha_3}y_3), \quad y = (y_1, y_2, y_3) \in \mathbb{S}^2, \quad r \in \mathbb{R}^+, \quad \text{and singularities, which lead to a global topology of the three-dimensional system.}$$

then system (2) in $\mathbb{R}^3 \setminus \{(0, 0, 0)\}$ turns into

$$\frac{dr}{dt} = r^{\delta-1}(\mathbf{y}, Q(\mathbf{y})) - (\mathbf{y}, Q(\mathbf{y}))\mathbf{y}, \quad \frac{d\mathbf{y}}{dt} = r^{\delta-1}(\mathbf{y}, Q(\mathbf{y})).$$

☆ Supported by the Ph.D. Programs Foundation of the Ministry of Education of China (No. 20100171110040), NSF of China (No. 10871214) and the Program for New Century Excellent Talents in University.

* Corresponding author. Tel.: +86 13342872269.
E-mail addresses: huangjf2@mail.sysu.edu.cn (J. Huang), mcszy @ mail.sysu.edu.cn (Y. Zhao).

0362-546X$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2011.03.043