Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Analysis of nonsmooth vector-valued functions associated with infinite-dimensional second-order cones

Ching-Yu Yang, Yu-Lin Chang, Jein-Shan Chen^{*,1}

Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan

ARTICLE INFO

Article history: Received 28 July 2010 Accepted 21 May 2011 Communicated by Ravi Agarwal

Keywords: Hilbert space Infinite-dimensional second-order cone Strong semismoothness

ABSTRACT

Given a Hilbert space \mathcal{H} , the infinite-dimensional Lorentz/second-order cone \mathbb{K} is introduced. For any $x \in \mathcal{H}$, a spectral decomposition is introduced, and for any function $f : \mathbb{R} \to \mathbb{R}$, we define a corresponding vector-valued function $f^{\mathcal{H}}(x)$ on Hilbert space \mathcal{H} by applying f to the spectral values of the spectral decomposition of $x \in \mathcal{H}$ with respect to \mathbb{K} . We show that this vector-valued function inherits from f the properties of continuity, Lipschitz continuity, differentiability, smoothness, as well as s-semismoothness. These results can be helpful for designing and analyzing solution methods for solving infinite-dimensional second-order cone programs and complementarity problems.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let \mathcal{H} be a real Hilbert space endowed with an inner product $\langle \cdot, \cdot \rangle$, and we write the norm induced by $\langle \cdot, \cdot \rangle$ as $\|\cdot\|$. For any given closed convex cone $K \subseteq \mathcal{H}$,

 $K^* := \{ x \in \mathcal{H} \mid \langle x, y \rangle \ge 0, \ \forall y \in K \}$

is the dual cone of *K*. A closed convex cone *K* in \mathcal{H} is called *self-dual* if *K* coincides with its dual cone K^* ; for example, the non-negative orthant cone \mathbb{R}^n_+ and the second-order cone (also called Lorentz cone) $\mathbb{K}^n := \{(r, x') \in \mathbb{R} \times \mathbb{R}^{n-1} \mid r \ge ||x'||\}$. As discussed in [1], this Lorentz cone \mathbb{K}^n can be rewritten as

$$\mathbb{K}^{n} := \left\{ x \in \mathbb{R}^{n} \mid \langle x, e \rangle \geq \frac{1}{\sqrt{2}} \|x\| \right\} \quad \text{with } e = (1, 0) \in \mathbb{R} \times \mathbb{R}^{n-1}.$$

This motivates us to consider the following closed convex cone in the Hilbert space \mathcal{H} :

 $K(e, r) := \{x \in \mathcal{H} \mid \langle x, e \rangle \ge r \|x\|\}$

where $e \in \mathcal{H}$ with ||e|| = 1 and $r \in \mathbb{R}$ with 0 < r < 1. It can be seen that K(e, r) is pointed, i.e., $K(e, r) \cap (-K(e, r)) = \{0\}$. Moreover, by denoting

 $\langle e \rangle^{\perp} := \{ x \in \mathcal{H} \mid \langle x, e \rangle = 0 \},\$

we may express the closed convex cone K(e, r) as

$$K(e, r) = \left\{ x' + \lambda e \in \mathcal{H} \mid x' \in \langle e \rangle^{\perp} \text{ and } \lambda \geq \frac{r}{\sqrt{1 - r^2}} \|x'\| \right\}.$$

^{*} Corresponding author. Tel.: +886 2 29325417; fax: +886 2 29332342.

E-mail addresses: yangcy@math.ntnu.edu.tw (C.-Y. Yang), ylchang@math.ntnu.edu.tw (Y.-L. Chang), jschen@math.ntnu.edu.tw, jschen@ntnu.edu.tw (J.-S. Chen).

¹ Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office.

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.05.068