Analysis of nonsmooth vector-valued functions associated with infinite-dimensional second-order cones

Ching-Yu Yang, Yu-Lin Chang, Jein-Shan Chen *,1
Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan

ARTICLE INFO

Article history:

Received 28 July 2010
Accepted 21 May 2011
Communicated by Ravi Agarwal

Keywords:

Hilbert space
Infinite-dimensional second-order cone Strong semismoothness

Abstract

Given a Hilbert space \mathcal{H}, the infinite-dimensional Lorentz/second-order cone \mathbb{K} is introduced. For any $x \in \mathscr{H}$, a spectral decomposition is introduced, and for any function $f: \mathbb{R} \rightarrow \mathbb{R}$, we define a corresponding vector-valued function $f^{\mathscr{H}}(x)$ on Hilbert space \mathscr{H} by applying f to the spectral values of the spectral decomposition of $x \in \mathscr{H}$ with respect to \mathbb{K}. We show that this vector-valued function inherits from f the properties of continuity, Lipschitz continuity, differentiability, smoothness, as well as s-semismoothness. These results can be helpful for designing and analyzing solution methods for solving infinitedimensional second-order cone programs and complementarity problems.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let \mathscr{H} be a real Hilbert space endowed with an inner product $\langle\cdot, \cdot\rangle$, and we write the norm induced by $\langle\cdot, \cdot\rangle$ as $\|\cdot\|$. For any given closed convex cone $K \subseteq \mathscr{H}$,

$$
K^{*}:=\{x \in \mathscr{H} \mid\langle x, y\rangle \geq 0, \forall y \in K\}
$$

is the dual cone of K. A closed convex cone K in \mathscr{H} is called self-dual if K coincides with its dual cone K^{*}; for example, the non-negative orthant cone \mathbb{R}_{+}^{n} and the second-order cone (also called Lorentz cone) $\mathbb{K}^{n}:=\left\{\left(r, x^{\prime}\right) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid r \geq\left\|x^{\prime}\right\|\right\}$. As discussed in [1], this Lorentz cone \mathbb{K}^{n} can be rewritten as

$$
\mathbb{K}^{n}:=\left\{x \in \mathbb{R}^{n} \left\lvert\,\langle x, e\rangle \geq \frac{1}{\sqrt{2}}\|x\|\right.\right\} \quad \text { with } e=(1,0) \in \mathbb{R} \times \mathbb{R}^{n-1}
$$

This motivates us to consider the following closed convex cone in the Hilbert space \mathscr{H} :

$$
K(e, r):=\{x \in \mathscr{H} \mid\langle x, e\rangle \geq r\|x\|\}
$$

where $e \in \mathscr{H}$ with $\|e\|=1$ and $r \in \mathbb{R}$ with $0<r<1$. It can be seen that $K(e, r)$ is pointed, i.e., $K(e, r) \cap(-K(e, r))=\{0\}$. Moreover, by denoting

$$
\langle e\rangle^{\perp}:=\{x \in \mathscr{H} \mid\langle x, e\rangle=0\}
$$

we may express the closed convex cone $K(e, r)$ as

$$
K(e, r)=\left\{x^{\prime}+\lambda e \in \mathscr{H} \mid x^{\prime} \in\langle e\rangle^{\perp} \text { and } \lambda \geq \frac{r}{\sqrt{1-r^{2}}}\left\|x^{\prime}\right\|\right\} .
$$

[^0]
[^0]: * Corresponding author. Tel.: +886 2 29325417; fax: +886 29332342.

 E-mail addresses: yangcy@math.ntnu.edu.tw (C.-Y. Yang), ylchang@math.ntnu.edu.tw (Y.-L. Chang), jschen@math.ntnu.edu.tw, jschen@ntnu.edu.tw (J.-S. Chen).

 1 Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office.

