# Comparison results for initial value problems of second-order impulsive integro-differential inclusions ${ }^{\text {* }}$ 

Shihuang Hong*, Min Zhang

Institute of Applied Mathematics and Engineering Computations, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China

## ARTICLE INFO

## Article history:

Received 28 February 2009
Accepted 13 August 2010

## Keywords:

Multivalued operators
Fixed points
Cones
Comparison principles
Impulsive integro-differential inclusions Initial value problems


#### Abstract

In this paper, we present new maximum and minimum principles for the initial value problem for a class of second-order nonlinear impulsive integro-differential inclusions with discontinuous multivalued functions on the right hand side in a real Banach space. This allows us to lead on to the development of the comparison principle and monotone iterative technique for a nonlinear second-order impulsive integro-differential inclusion. © 2010 Elsevier Ltd. All rights reserved.


## 1. Introduction

Impulsive integro-differential equations have become more important in some mathematical models of real phenomena, especially in control, biological, medical, and informational models. Initial value problems for nonlinear integro-differential equations are used to describe a large number of nonlinear phenomena in science (see [1]). The theory of impulsive differential equations has seen considerable development in the last few decades. We mention, for instance, the monographs [1-25]. In this paper we are concerned with the following initial value problems for second-order impulsive integro-differential inclusions in Banach space $E$ :

$$
\left\{\begin{array}{l}
x^{\prime \prime} \in F(t, x, T x), \quad t \in \mathcal{G}, t \neq t_{k},  \tag{1}\\
\left.\Delta x\right|_{t=t_{k}}=-\sum_{j=1}^{k} a_{k j} x\left(t_{j}\right)+\sum_{j=1}^{k} b_{k j} x^{\prime}\left(t_{j}\right), \\
\left.\Delta x^{\prime}\right|_{t=t_{k}}=-\sum_{j=1}^{k} c_{k j} x\left(t_{j}\right), \quad k=1,2, \ldots, m \\
x(0)=x_{0}, \quad x^{\prime}(0)=x_{1},
\end{array}\right.
$$

where $F$ is a multivalued map from $\mathcal{g} \times E \times E$ into $2^{E}, 2^{E}$ is a family of all nonempty subsets of $E, \mathcal{G}=[0, a]$ with $a>0,0<t_{1}<t_{2}<\cdots<t_{m}<a, T$ is a linear operator defined by

$$
(T x)(t)=\int_{0}^{t} l(t, s) x(s) \mathrm{d} s, \quad t \in \mathscr{F}
$$

[^0]
[^0]:    Supported by the Natural Science Foundation of Zhejiang Province (Y607178) and the Natural Science Foundation of China (10771048).

    * Corresponding author. Tel.: +86 89866279122; fax: +86 057188910795.

    E-mail address: hongshh@hotmail.com (S.H. Hong).

