On an asymptotically p-linear p-Laplacian equation in $\mathbb{R}^{N \text { * }}$

Jiaquan Liu ${ }^{\text {a,b }}$, Xiangqing Liu ${ }^{\text {a,c,*, Yuxia Guo }}{ }^{\text {d }}$
${ }^{\text {a D Department of Mathematics, Soochow University, Suzhou 215006, Jiangsu, PR China }}$
${ }^{\mathrm{b}}$ LMAM, School of Mathematical Science, Peking University, Beijing 100871, PR China
${ }^{\text {c }}$ Department of Mathematics, Yunnan Normal University, Kunming 650092, PR China
${ }^{\text {d }}$ Department of Mathematical Science, Tsinghua University, Beijing 100084, PR China

ARTICLE INFO

Article history:

Received 12 November 2009
Accepted 14 September 2010

Keywords:

p-Laplacian
Asymptotically p-linear
Sign-changing solution

A B S TRACT
 In this paper, we study the existence of positive solutions and sign-changing solutions for the p-Laplacian equation
 $$
-\Delta_{p} u+\lambda g(x)|u|^{p-2} u=f(x, u), \quad x \in \mathbb{R}^{N},
$$

where λ is a positive parameter and the nonlinear term f is superlinear at zero and asymptotically p-linear at infinity.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are concerned with the following p-Laplacian equation in \mathbb{R}^{N} :

$$
\begin{equation*}
-\Delta_{p} u+\lambda g(x)|u|^{p-2} u=f(x, u), \quad x \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian, $1<p<N$, λ is a positive parameter. Assume that g satisfies the condition (G) $g \in L^{\infty}\left(\mathbb{R}^{N}\right), g \geq 0, \lim _{|x| \rightarrow \infty} g(x)=1$ and meas $\left\{x \in \mathbb{R}^{N}: g(x)<1\right\}>0$.

As for the nonlinear term f, we make the following assumptions.
$\left(\mathrm{f}_{1}\right) f(x, t) \in C\left(\mathbb{R}^{N} \times \mathbb{R}, \mathbb{R}\right), f(x, 0)=0$.
(f f_{2}) $\lim _{|t| \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t}=0$ uniformly in $x \in \mathbb{R}^{N}$.
(f f_{3}) There exists α such that $\lim _{|t| \rightarrow \infty} \frac{f(x, t)}{|t|^{-2} t}=\alpha$ for a.e. $x \in \mathbb{R}^{N}$.
(f $\left.\mathrm{f}_{4}\right) \overline{\lim }_{|x| \rightarrow \infty} \sup _{t \neq 0} \frac{f(x, t)}{|t| p^{-2} t}=\beta<\lambda$.
(f_{5}) There exists $C>0$ such that $|f(x, t)| \leq C|t|^{p-1}$ for a.e. $x \in \mathbb{R}^{N}$ and all $t \in \mathbb{R}$.
Remark 1.1. Under the conditions $\left(f_{1}\right)-\left(f_{5}\right)$. It is easy to verify that $\alpha \leq \beta \leq C$. Strict inequalities may happen. Here is an example.

$$
f(x, t)=\frac{|t|^{p-2} t^{3}}{a(t)+t^{2}}+\frac{|t|^{p-2} t^{3} \mathrm{e}^{1-t^{2}}\left(1+|x|^{2}\right)}{1+2|x|^{2}}
$$

where $a(t)=1$ for $t<1 / 2, a(t)=2-2 t$ for $t \in[1 / 2,1]$ and $a(t)=0$ for $t>1$. For such a function f, we have $\alpha=1, \beta=3 / 2$ and $C=2$.

[^0]
[^0]: * This work was supported by NSFC (No. 10871110) and NSFY of Yunnan Province (No. 2009CD043).
 * Corresponding author at: Department of Mathematics, Yunnan Normal University, Kunming 650092, PR China.

 E-mail address: lxq8u8@163.com (X. Liu).

