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a b s t r a c t

In this paper, let Σ be a C3 compact convex in R2n satisfying the reversible condition
NΣ = Σ with N = diag(−In, In). We prove that if there are exactly n geometrically
distinct closed characteristics on Σ and all of them are nondegenerate, then all of them
must be brake orbits up to a suitable translation of time. Moreover, for n = 2 or 3, we
prove that if there are exactly n geometrically distinct closed characteristics onΣ , then all
of them must be brake orbits up to a suitable translation of time.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In this paper, let J =


0 −I
I 0


and N =


−I 0
0 I


with I being the identity in Rn. Let Σ be a C3 compact hypersurface in

R2n bounding a bounded and strictly convex domain C in R2n. Without loss of generality, we may assume that C contains
the origin. We denote the set of all such hypersurfaces in R2n by H(2n). We call Σ reversible if it satisfies the reversible
conditionΣ = NΣ := {Nx|x ∈ Σ} and denote by Hb(2n) the set of all reversible hypersurfaces in H(2n). We consider the
dynamics problem of finding τ > 0 and an absolutely continuous curve x : [0, τ ] → R2n such that

ẋ(t) = JNΣ (x(t)), x(t) ∈ Σ, (1.1)
x(τ + t) = x(t), ∀t ∈ R, (1.2)

where NΣ (x) is the outward unit vector at x ofΣ .
A solution (τ , x) of problem (1.1)–(1.2) is called a closed characteristic on Σ . Furthermore, as in [1], if the closed

characteristic (τ , x) satisfies that x(−t) = Nx(t) for all t ∈ R, we call it a brake orbit onΣ .
Two closed characteristics (τ1, x1) and (τ2, x2) are called geometrically distinct if x1(R) ≠ x2(R). We denote by J(Σ)

and J̃(Σ) the set of all closed characteristics (τ , x) on Σ with τ being the minimal period of x and geometrically distinct
ones on Σ respectively. For (τ , x) ∈ J(Σ), we denote by [(τ , x)] the set of all elements in J(Σ) which are geometrically
the same as (τ , x).
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