A counterexample to uniqueness of generalized characteristics in Hamilton–Jacobi theory

Thomas Strömberg

Department of Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden

ARTICLE INFO

Article history:
Received 16 September 2010
Accepted 29 December 2010

MSC:
35A21
49L25

Keywords:
Hamilton–Jacobi equation
Generalized characteristic
Propagation of singularities

ABSTRACT

The notion of generalized characteristics plays a pivotal role in the study of propagation of singularities for Hamilton–Jacobi equations. This note gives an example of nonuniqueness of forward generalized characteristics emanating from a given point.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We are in this note concerned with generalized characteristics for the Hamilton–Jacobi equation

\[S_t + H(x, \nabla S) = 0 \quad \text{in } Q = (0, \infty) \times \mathbb{R}^n, \quad S(0, x) = S_0(x) \quad \text{in } \mathbb{R}^n, \]

in the multidimensional case \(n \geq 2 \). While the existence of generalized characteristics is well-known, the corresponding uniqueness problem is largely unsettled. The purpose of the present contribution is to manifest that forward generalized characteristics are nonunique, in general. The Hamiltonian \(H \) appearing in (1) is the Legendre–Fenchel transform of a Lagrangian \(L \). We assume the following conditions linking (1) to a problem in the calculus of variations.

(A) The Lagrangian \(L \) is from \(C^2(\mathbb{R}^n \times \mathbb{R}^n) \). It fulfills \(\nabla^2_L \ell(x, v) > 0 \) and \(L(x, v) \geq \ell(|v|) \) for all \((x, v) \in \mathbb{R}^n \times \mathbb{R}^n \) where \(\ell(s)/s \to \infty \) as \(s \to \infty \). The Hamiltonian \(H \) is given by

\[H(x, p) = \max_{v \in \mathbb{R}^n} (\langle p, v \rangle - L(x, v)), \quad (x, p) \in \mathbb{R}^n \times \mathbb{R}^n. \]

(B) The initial function \(S_0 \) is locally semiconcave, i.e., for each compact, convex set \(C \subset \mathbb{R}^n \) there exists \(\alpha > 0 \) such that \(S_0(x) - \alpha|x|^2/2 \) is a concave function of \(x \in C \). Moreover, \(S_0(x) \geq -K(1 + |x|) \) for some constant \(K \geq 0 \).

In generic terms, \(\nabla^2 f \) signifies the Hessian matrix of a function \(f \in C^2(\mathbb{R}^n) \). The notation \(\nabla^2 f > 0 \) means that \(\nabla^2 f(p) \) is a positive definite matrix for every \(p \in \mathbb{R}^n \). Condition (A) ensures that \(H \in C^2(\mathbb{R}^n \times \mathbb{R}^n) \) and \(\nabla^2_H > 0 \) in \(\mathbb{R}^n \times \mathbb{R}^n \). We consider the functional

\[J^t(x) = S_0(x(0)) + \int_0^t L(\dot{x}(s), x(s)) ds, \quad x \in \mathcal{A}(t, x), \]

\[\text{A counterexample to uniqueness of generalized characteristics in Hamilton–Jacobi theory} \]

Thomas Strömberg

Department of Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden

ARTICLE INFO

Article history:
Received 16 September 2010
Accepted 29 December 2010

MSC:
35A21
49L25

Keywords:
Hamilton–Jacobi equation
Generalized characteristic
Propagation of singularities

ABSTRACT

The notion of generalized characteristics plays a pivotal role in the study of propagation of singularities for Hamilton–Jacobi equations. This note gives an example of nonuniqueness of forward generalized characteristics emanating from a given point.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We are in this note concerned with generalized characteristics for the Hamilton–Jacobi equation

\[S_t + H(x, \nabla S) = 0 \quad \text{in } Q = (0, \infty) \times \mathbb{R}^n, \quad S(0, x) = S_0(x) \quad \text{in } \mathbb{R}^n, \]

in the multidimensional case \(n \geq 2 \). While the existence of generalized characteristics is well-known, the corresponding uniqueness problem is largely unsettled. The purpose of the present contribution is to manifest that forward generalized characteristics are nonunique, in general. The Hamiltonian \(H \) appearing in (1) is the Legendre–Fenchel transform of a Lagrangian \(L \). We assume the following conditions linking (1) to a problem in the calculus of variations.

(A) The Lagrangian \(L \) is from \(C^2(\mathbb{R}^n \times \mathbb{R}^n) \). It fulfills \(\nabla^2_L \ell(x, v) > 0 \) and \(L(x, v) \geq \ell(|v|) \) for all \((x, v) \in \mathbb{R}^n \times \mathbb{R}^n \) where \(\ell(s)/s \to \infty \) as \(s \to \infty \). The Hamiltonian \(H \) is given by

\[H(x, p) = \max_{v \in \mathbb{R}^n} (\langle p, v \rangle - L(x, v)), \quad (x, p) \in \mathbb{R}^n \times \mathbb{R}^n. \]

(B) The initial function \(S_0 \) is locally semiconcave, i.e., for each compact, convex set \(C \subset \mathbb{R}^n \) there exists \(\alpha > 0 \) such that \(S_0(x) - \alpha|x|^2/2 \) is a concave function of \(x \in C \). Moreover, \(S_0(x) \geq -K(1 + |x|) \) for some constant \(K \geq 0 \).

In generic terms, \(\nabla^2 f \) signifies the Hessian matrix of a function \(f \in C^2(\mathbb{R}^n) \). The notation \(\nabla^2 f > 0 \) means that \(\nabla^2 f(p) \) is a positive definite matrix for every \(p \in \mathbb{R}^n \). Condition (A) ensures that \(H \in C^2(\mathbb{R}^n \times \mathbb{R}^n) \) and \(\nabla^2_H > 0 \) in \(\mathbb{R}^n \times \mathbb{R}^n \). We consider the functional

\[J^t(x) = S_0(x(0)) + \int_0^t L(\dot{x}(s), x(s)) ds, \quad x \in \mathcal{A}(t, x), \]