Stability of perturbed n-dimensional Volterra differential equations

Xiao Chang ${ }^{\text {a,b,*, }}$ Ruiqi Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030, China
${ }^{\text {b }}$ Institute of Systems Biology, Shanghai University, Shanghai, 200444, China

ARTICLE INFO

Article history:

Received 7 September 2010
Accepted 18 October 2010

Keywords:

Integral-differential equations
Delays
Stability
Uniform stability

A B S T R A C T

In this work we deal with the problem of the stability and uniform stability of the perturbed n-dimensional Volterra integral and differential equation

$$
x^{\prime}(t)=A(t) x(t)+\int_{-\infty}^{t} C(t, s) x(s) \mathrm{d} s+\int_{-\infty}^{t} D(t, s) x^{\prime}(s) \mathrm{d} s+b(t)
$$

Some sufficient conditions for the zero solution of this equation to be stable as well as uniformly stable have been obtained.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been increasing interest in the Volterra system; see [1-5]. Many scholars and researchers have considered the stability of the Volterra integral-differential equation

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t)+\int_{0}^{t} C(t, s) x(s) \mathrm{d} s \tag{1}
\end{equation*}
$$

In the above equation, $A(t)$ is an $n \times n$ function matrix and is continuous on the interval $[0, \infty), C(t, s)$ is an $n \times n$ matrix, and when $0 \leq s \leq t<\infty$ it is continuous, and $\int_{t}^{+\infty}\|C(u, s)\| \mathrm{d} u$ is continuous in t when $0 \leq s \leq t<\infty$. In [1] the sufficient conditions for the stability and uniform stability of the zero solution when $A(t)$ is a scalar function and a constant matrix respectively were discussed. [2] improved the corresponding theorem from [1] and considered the condition when matrix A was a function matrix, and [3] gave a series of sufficient conditions for the stability, uniform stability and asymptotic stability of the zero solution of Eq. (1) when $A(t)$ is an n-dimensional function matrix. Theorem 1 in [3] is the following: If there exists a matrix P, with $K_{1} \geq\|P\|$ and $K_{2} \geq 0$, such that

$$
2 \lambda_{M}(t, P, A)+K_{1} \int_{0}^{t}\|C(t, s)\| \mathrm{d} s+\int_{t}^{+\infty}\|C(u, t)\| \mathrm{d} u \leq-K_{2}
$$

then the zero solution of Eq. (1) is stable, where $\lambda_{M}(t, p, A)$ is the biggest eigenvalue of the matrix

$$
\frac{P A(t)+A^{T}(t) P}{2} .
$$

[^0]
[^0]: * Corresponding author at: College of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030, China. Tel.: +86 2166136130.

 E-mail address: chxlaugh@163.com (X. Chang).

