Original article

Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a septic Lyapunov system ${ }^{\text {ith }}$

Li Feng ${ }^{\text {a,b,* }}$, Liu Yirong ${ }^{\text {a }}$, Li Hongwei ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematical Science and Computing Technology, Central South University, Changsha 410075, Hunan, PR China
${ }^{\mathrm{b}}$ School of Mathematics, Linyi University, Linyi 276005, Shandong, PR China

Received 4 July 2010; received in revised form 23 March 2011; accepted 2 May 2011
Available online 18 May 2011

Abstract

In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of septic polynomial differential systems are investigated. With the help of computer algebra system MATHEMATICA, the first 13 quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The result that there exist 13 small amplitude limit cycles created from the three order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for septic Lyapunov systems.

© 2011 IMACS. Published by Elsevier B.V. All rights reserved.
MSC: 34C05; 34C07
Keywords: Three-order nilpotent critical point; Center-focus problem; Bifurcation of limit cycles; Quasi-Lyapunov constant

1. Introduction

The nilpotent center problem was investigated by Moussu [16] and Stróżyna [17]. Nevertheless, given an analytic system with a monodromic point, it is still very difficult to detect if it is a focus or a center, even in the case of a concrete polynomial systems. In this paper, we consider an autonomous planar ordinary differential equation having a three-order nilpotent critical point with the form

$$
\begin{align*}
\frac{d x}{d t}= & y+y^{2}-x^{2} y+a_{12} x y^{2}+a_{50} x^{5}+a_{05} y^{5}+a_{06} y^{6}+6 b_{06} x y^{5} \\
& +a_{33} x^{3} y^{3}+\frac{5}{2} b_{15} x^{2} y^{4}+a_{42} x^{4} y^{2}+a_{07} y^{7}+a_{52} x^{5} y^{2}+a_{34} x^{3} y^{4} \tag{1.1}\\
\frac{d y}{d t}= & -2 x^{3}-a_{12} x^{2} y+b_{03} y^{3}-5 a_{50} x^{4} y+b_{60} x^{6}-b_{06} y^{6}-\frac{3}{4} a_{33} x^{2} y^{4} \\
& -b_{15} x y^{5}-\frac{4}{3} a_{42} x^{3} y^{3}+b_{34} x^{3} y^{4},
\end{align*}
$$

[^0]
[^0]: this research is partially supported by the National Nature Science Foundation of China (11071222).

 * Corresponding author at: School of Mathematical Science and Computing Technology, Central South University, Changsha 410075, Hunan, PR China. Tel.: +86 15974199044; fax: +86 07312656571. E-mail address: 1f0539@126.com.cn (L. Feng).

