اینستاگرام تی پی بین
همایش ، رویداد ، ژورنال
حوزه های تحت پوشش رویداد
  • periodic orbits and bifurcations in the sitnikov four-body problem when all primaries are oblate

    نویسندگان :
    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/07/24
    • تاریخ انتشار در تی پی بین: 1392/07/24
    • تعداد بازدید: 1231
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     we study the motions of an infinitesimal mass in the sitnikov four-body problem in which three equal oblate spheroids (called primaries) symmetrical in all respect, are placed at the vertices of an equilateral triangle. these primaries are moving in circular orbits around their common center of mass. the fourth infinitesimal mass is moving along a line perpendicular to the plane of motion of the primaries and passing through the center of mass of the primaries. a relation between the oblateness-parameter ‘a’ and the increased sides ‘ε’ of the equilateral triangle during the motion is established. we confine our attention to one particular value of oblateness-parameter a=0.003. only one stability region and 12 critical periodic orbits are found from which new three-dimensional families of symmetric periodic orbits bifurcate. 3-d families of symmetric periodic orbits, bifurcating from the 12 corresponding critical periodic orbits are determined. for a=0.005, observation shows that the stability region is wider than for a=0.003.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین ژورنال ها