همایش ، رویداد ، ژورنال
اینستاگرام تی پی بین
حوزه های تحت پوشش رویداد
  • implementation of a large-scale language model adaptation in a cloud environment

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/07/24
    • تاریخ انتشار در تی پی بین: 1392/07/24
    • تعداد بازدید: 1258
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     this paper presents a system of large-scale language model adaptation for daily generated big-size text corpus using mapreduce in a cloud environment. our large-scale trigram language model, consisting of 800 million trigram counts, was successfully implemented by a new approach using a representative cloud service (amazon ec2), and a representative distributed processing framework (hadoop). the ultimate goal of our research is to find the optimal number of amazon ec2 instances in the lm adaptation under the time constraint that the daily-generated twitter texts should be processed within 1 day. trigram count extraction and model update for language model adaptation were performed for 200 million daily-generated twitter texts. for trigram count extraction, we found that fewer than 3 h are required to process daily-generated twitter texts when the number of instances is six. for model update, it was shown that fewer than 20 h are required to perform the model update when the number of instances is 10. therefore, language model adaptation for daily generated 200 million twitter texts can be successfully adapted within 24 h using at least 10 instances in amazon ec2.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها