• efficient computational method for assessing the effects of implant positioning in cementless total hip replacements

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1390/06/01
    • تاریخ انتشار در تی پی بین: 1390/06/01
    • تعداد بازدید: 364
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -

    the present work describes a statistical investigation into the effects of implant positioning on the initial stability of a cementless total hip replacement (thr). mesh morphing was combined with design of computer experiments to automatically construct finite element (fe) meshes for a range of pre-defined femur-implant configurations and to predict implant micromotions under joint contact and muscle loading. computed micromotions, in turn, are postprocessed using a bayesian approach to: (a) compute the main effects of implant orientation angles, (b) predict the sensitivities of the considered implant performance metrics with respect to implant ante-retroversion, varus–valgus and antero-posterior orientation angles and (c) identify implant positions that maximise and minimise each metric. it is found that the percentage of implant area with micromotion greater than 50 μm, average and maximum micromotions are all more sensitive to antero-posterior orientation than ante-retroversion and varus–valgus orientation. sensitivities, combined with the main effect results, suggest that bone is less likely to grow if the implant is increasingly moved from the neutral position towards the anterior part of the femur, where the highest micromotions occur. the computed implant best position leads to a percentage of implant area with micromotion greater than 50 μm of 1.14 when using this metric compared to 14.6 and 5.95 in the worst and neutrally positioned implant cases. in contrast, when the implant average/maximum micromotion is used to assess the thr performance, the implant best position corresponds to average/maximum micromotion of 9 μm/59 μm, compared to 20 μm/114 μm and 13 μm/71 μm in the worst and neutral positions, respectively. the proposed computational framework can be extended further to study the effects of uncertainty and variability in anatomy, bone mechanical properties, loading or bone–implant interface contact conditions.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها