• spacetime dimensional analysis and self-similar solutions of linear elastodynamics and cohesive dynamic fracture

    نویسندگان :
    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/01/01
    • تاریخ انتشار در تی پی بین: 1392/01/01
    • تعداد بازدید: 641
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     we present a dimensional analysis and self-similar solutions for linear elastodynamics with extensions to dynamic fracture models based on cohesive traction–separation relations. we formulate the problem using differential forms in spacetime and show that the scaling rules expressed in terms of forms are simpler and more uniform than those obtained for tensor representations of the solution. in the extension to cohesive elastodynamic fracture, we identify and study the influence of certain intrinsic cohesive scales on dynamic fracture behavior and describe a fundamental set of nondimensional groups that uniquely identifies families of self-similar solutions. we present numerical studies of the influence of selected nondimensional parameters on dynamic fracture response to verify the dimensional analysis, including the identification of the fundamental set for cohesive fracture mechanics. we show that distinct values of a widely-used nondimensional quantity can produce self-similar solutions. therefore, this quantity is not fundamental, and it cannot parameterize dynamic, cohesive-fracture response.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها