Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines

Punit Singh *, Franz Nestmann

Institute of Water and River Basin Management (IWG), Karlsruhe Institute of Technology, Kaiser Str. 12, D 76131 Karlsruhe, Germany

ARTICLE INFO

Article history:
Received 22 May 2010
Received in revised form 3 August 2010
Accepted 22 August 2010

Keywords:
Impeller rounding
Pump as turbine
Free vortex theory
Loss coefficient
Exit relative flow angle
Prediction model

ABSTRACT

The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement.

In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency.

The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1–3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume.

The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding effects over wide range of pump shapes including axial pumps.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

Pumps as turbines have come a long way since its accidental discovery by Thoma [1] for both energy recovery and decentralized power generation. The focus of the pump companies as well as the scientists has been to develop accurate prediction models for the turbine operation of different designs of centrifugal pumps. Despite there being considerable work by various scientists as reported by Williams [2], Amelio et al. [3] and Derakhshan and Nourbakhsh [4], the accuracy of these models has remained a question mark. Recently, Singh and Nestmann in [5] presented an optimization model with accuracies within ±3% for pump specific speeds 20–80 rpm. However, even this model requires continuous verification and optimization.

While the prediction model for pumps as turbines will undergo further development, there are other important issues that have to be dealt with. Singh [6] demonstrated various possibilities of modifying the pump geometry to improve the performance of a given pump in turbine mode. The topic of hydraulic optimization is the next stage of research activity in PATs and should be treated on par with the topic of prediction model. The issue of hydraulic performance optimization comes only after a convincing pump selection has been made for a given turbine application. Singh [6] showed that off the different geometric modifications attempted, the modification at the periphery of the impeller blades known as impeller rounding was the most beneficial. This type of modification was first carried out by Luenenberg and Nelson [7] and Cohrs [8] on individual pumps and both reported an efficiency improvement in the range of 1.5–2%. Singh [6] carried out inlet rounding on eight different centrifugal pumps and presented a qualitative understanding of impeller rounding effects with respect to the