• جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/07/24
    • تاریخ انتشار در تی پی بین: 1392/07/24
    • تعداد بازدید: 847
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     we propose a novel framework for automatic discovering and learning of behavioural context for video-based complex behaviour recognition and anomaly detection. our work differs from most previous efforts on learning visual context in that our model learns multi-scale spatio-temporal rather than static context. specifically three types of behavioural context are investigated: behaviour spatial contextbehaviour correlation context, and behaviour temporal context. to that end, the proposed framework consists of an activity-based semantic scene segmentation model for learning behaviour spatial context, and a cascaded probabilistic topic model for learning both behaviour correlation context and behaviour temporal context at multiple scales. these behaviour context models are deployed for recognising non-exaggerated multi-object interactive and co-existence behaviours in public spaces. in particular, we develop a method for detecting subtle behavioural anomalies against the learned context. the effectiveness of the proposed approach is validated by extensive experiments carried out using data captured from complex and crowded outdoor scenes.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین ژورنال ها