• using anns and regression trees approaches to estimate scour depth around a circullar pile due to wave in medium dense silt and sand bed

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1387/01/01
    • تاریخ انتشار در تی پی بین: 1387/01/01
    • تعداد بازدید: 738
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     prediction of scour around a pile due to oscillatory wave action is very important in many offshore and marine engineering problems. because of complexity of scour process, most of the empirical formulas are unable to estimate scour hole depth accurately. artificial neural networks (anns) and regression trees are efficient procedures to understand and model complex systems with ambiguous relations. a multi layer perceptron (mlp) is one of the most common kinds of anns and has been used to map input-output systems while cart algorithm was employed for building and evaluating regression trees. in the present study, two input sets were employed to estimate scour depth: dimensional parameters such as bed grain size, pile diameter, wave period, wave height, maximum flow velocity and maximum shear velocity nondimensional parameters such as pile reynolds number, shields parameter, keulegan- carpenter number, grain reynolds number, sediment number and relative density. output parameter was nondimensional equilibrium scour depth. the tests results reveal that a mlp with back propagation learning rule and cart model based on nondimensional parameters can predict scour hole depth better than the existing empirical formula. also, a sensitivity analysis was carried out and it showed that keulegan-carpenter number and wave height are the most important parameters in scour process.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها